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A B S T R A C T

This paper provides an analytical framework and uses data from the U.S. and Germany to test for the exis-
tence of contagious presenteeism and negative externalities in sick leave insurance. The first part exploits
high-frequency Google Flu data and the staggered implementation of U.S. sick pay mandates to show, using
a reduced-form framework, that population-level influenza-like disease rates decrease after employees
gain access to paid sick leave. Next, a simple theoretical framework provides evidence on the underlying
behavioral labor supply mechanisms. The model theoretically decomposes overall labor supply adjust-
ments (“moral hazard”) into contagious presenteeism and noncontagious absenteeism behavior and derives
testable conditions. The last part illustrates how to implement the model exploiting a German sick pay
reform and administrative industry-level data on certified sick leave by diagnosis. The empirical test finds
that the labor supply elasticity for contagious diseases is significantly smaller than for noncontagious dis-
eases. Under the identifying assumptions of the model, this finding provides additional indirect evidence for
the existence of contagious presenteeism.
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“Send me a bill that gives every worker in America the opportunity
to earn seven days of paid sick leave. It’s the right thing to do. It’s the
right thing to do.”

Barack Obama
in his State of the Union Address (January 20, 2015)

“I think the Republicans would be smart to get behind it.”

Bill O’Reilly
in The O’Reilly Factor – Fox News (January 21, 2015)

1. Introduction

Besides Canada and Japan, the U.S. is the only industrialized
country that does not provide universal access to paid sick leave
(Heymann et al., 2009). Paid sick leave is different from Disability
Insurance (which provides income replacement in case of permanent
work disability) or Workers Compensation (which provides income
replacement and medical benefits in case of work-related sickness).
Paid sick leave gives employees the right to call in sick and receive
sick pay due to work-unrelated short-term sickness; for example, due
to the common cold or back pain.

In 2011, a third of U.S. full-time employees lacked sick leave cov-
erage; among low-income and service sector employees, the unin-
surance rates exceeded 80% (Susser and Ziebarth, 2016). However,
support for sick leave mandates has grown substantially in the last
decade. At the federal level, the Healthy Families Act (reintroduced
in Congress in 2015) proposes the legal right for employees to earn
one hour of paid sick leave per week, up to seven days per year. The
epigraphs above suggest potential bipartisan support, but a decade
of discussions in Congress has failed to deliver any concrete results.
Instead, cities and states have taken steps and implemented man-
dates at the lower administrative level. On the city level, mandates
were implemented in San Francisco (2007), Washington D.C. (2008),
Seattle (2012), Portland (2014), New York City (2014), Philadelphia
(2015), and several dozen other cities throughout this time. On the
state level, Connecticut was first to implement a sick pay man-
date for service sector workers in medium and large businesses in
2012. California, Massachusetts, and Oregon followed with more
comprehensive mandates in 2015 and 2016.

One objective of this paper is to provide an analytical frame-
work of the underlying labor supply reactions of employees when
sick pay changes. Traditionally, behavioral adjustments to varying
levels of insurance generosity have been labeled “moral hazard”
in economics (Pauly, 1974; Nyman, 1999). We develop a simple
model that decomposes overall employee labor supply adjustments
into what we call “contagious presenteeism” and “noncontagious
absenteeism.” Contagious presenteeism is when employees with
a contagious disease (e.g., a common cold) go to work sick and
spread the disease to co-workers, customers, and the general popu-
lation. Such behavior induces negative externalities. Noncontagious

absenteeism is when employees without a contagious disease (e.g.,
back pain) call in sick. When sick pay changes, both behavioral
responses work in opposite directions. For example, when employ-
ees obtain sick leave coverage, marginal employees with a common
cold will call in sick and will not spread the disease because of
sick pay. Contagious presenteeism decreases. On the other hand,
marginal employees with back pain will call in sick because of sick
pay. Noncontagious absenteeism increases.

One key element of our proposed theoretical mechanism is infor-
mation frictions about contagiousness; if employers had perfect
information, they could ban contagious employees from working.
However, supported by intuition and empirical evidence (Pauly
et al., 2008), employers have only incomplete information about
employees’ contagiousness. For example, after the first occurrence
of flu sickness symptoms, humans are contagious for 5 to 7 days
(Centers for Disease Control and Prevention, 2016). Furthermore, the
availability of over-the-counter drugs that suppress disease symp-
toms reinforces the spread of disease (Earn et al., 2014). Because
of such information frictions, employers cannot fully internalize the
negative externalities induced by contagious employees who work.
Sick pay schemes then incentivize those contagious employees to
stay at home but also induce noncontagious employees to call in sick
more often.

While the traditional social insurance literature has considered
behavioral adjustments to government regulation as generally unde-
sirable, more recent papers also identify and emphasize welfare
gains of such regulation. Welfare gains could be the value of leisure
time (Fadlon and Nielsen, 2015), higher liquidity (Nyman, 2003;
Chetty, 2008), or better job matches in case of unemployment ben-
efits (van Ours and Vodopivec, 2008; Schmieder et al., 2012; Nekoei
and Weber, 2017). This paper adds to this literature by identify-
ing welfare gains of sick pay in the form of lower infection rates.
However, we deliberately abstain from a normative welfare analysis.
Because any social insurance involves welfare gains and losses, a wel-
fare analysis would require implicitly or explicitly weighting these
benefits and losses. Rather, we provide a positive analysis, and theo-
retically as well as empirically decompose the behavioral employee
responses to variations in sick pay.

To our knowledge, this is the first attempt to define “contagious
presenteeism” as a negative externality of a suboptimal provision of
sick pay, and then to empirically identify it. The empirical identifica-
tion of contagious presenteeism is particularly challenging because
contagiousness is to a large degree unobservable and presenteeism
(“going to work sick”) is to a large degree subjective. Therefore we
propose two different empirical identification approaches using data
from two countries: the U.S. with one of the least generous sick leave
systems in the world, and Germany with one of the most generous
sick leave systems in the world.

The first identifying test exploits high-frequency Google Flu data
to estimate the impact of city-level sick pay mandates on influenza-
like illness (ILI) rates in the U.S. The staggered implementation of sick
pay mandates across metropolitan areas over time naturally leads
to the estimation of standard difference-in-differences (DD) mod-
els. We make use of publicly available Google Flu data as they are
available at the weekly level for 97 metropolitan areas over a long
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time period. Using Google search queries and a specific algorithm,
Google Flu retrospectively replicates the official ILI rates (which
are not available to researchers at the city level). We first demon-
strate the relevance of measurement error in the Google Flu data
and verify that it is not correlated with the reforms. Then we show
the following: After U.S. employees gained access to paid sick leave
because of sick pay mandates, the ILI rate in the population decreased
significantly. This finding yields strong reduced-form evidence for
the existence of contagious presenteeism, and that such behavior
becomes less common when employees are able to take sick days.
The finding that sick pay mandates can result in fewer infections and
lower influenza activity at the population level is highly policy rele-
vant. It also has implications for specific workplace settings, such as
schools or hospitals, where particularly vulnerable populations can
be affected by the spread of diseases.

The second identifying test is closely linked to the analytical
framework in the middle part of the paper. The identification hinges
on one main (strong) assumption, and the data that we exploit are
not ideal. However, the last part of the paper is still valuable as it
illustrates how to carry out an alternative empirical test that has
the potential to identify contagious presenteeism and noncontagious
absenteeism. This last part exploits a policy reform that cut sick pay
in the 1990s in Germany. Using administrative data aggregated at
the industry level and variation in industry-specific sick pay regu-
lations, we estimate labor supply elasticities by doctor-certified ICD
disease categories. Within the context of our model, which (absent
contagious presenteeism) assumes similar elasticities for contagious
and noncontagious diseases, the difference in the aggregated labor
supply elasticities is then a function of additional infections due to
contagious presenteeism.

The next chapter discusses the history of sick leave as a social
insurance. It also carves out contributions of this paper in the con-
text of sick leave literature and literature on infectious diseases.
More broadly, this paper contributes to social insurance literature
(see above). Because a main theme of the paper is negative exter-
nalities, it also relates to papers that identify externalities in the
context of UI (Lalive et al., 2015; Marinescu, 2017), endogenous pri-
vate insurance (Chetty and Saez, 2010), or unhealthy consumption
goods (O’Donoghue and Rabin, 2006).

Section 3 describes the U.S. sick pay mandates in more detail
and provides reduced-form evidence that they reduced ILI rates. The
middle part of the paper presents our theoretical framework and
Section 5 implements the closely linked empirical test using German
data. The final section concludes.

2. Paid sick leave history and literature

Historically, paid sick leave was part of the first social insurance
system in the world. The first public health insurance legislation
included sick leave benefits as part of the benefit package. Under
Otto van Bismarck, the Sickness Insurance Law of 1883 introduced
social health insurance in Germany, which included 13 weeks of
paid sick leave along with coverage for medical bills. At the time,
the costs for paid sick leave exceeded half of all health care costs
due to the limited availability of (expensive) medical treatments
in the nineteenth century (Busse and Riesberg, 2004). Today, every
European country has some form of universal access to paid sick
leave.

Opponents of paid sick leave mandates argue that such a social
insurance benefit would encourage shirking behavior. Moreover,
forcing employers to provide sick pay via mandates or new taxes
would dampen job creation and hurt employment. However, using
synthetic control group methods and similar variation than this
paper, Pichler and Ziebarth (2016a) find no evidence that the early
U.S. sick pay mandates had an economically relevant effect on wages

or employment. A general argument against government-mandated
sick leave argues that, if coverage were optimal, the private market
would ensure that employers would provide such benefits.

In addition to inequality and worker well-being concerns, one
rationale for sick pay mandates is public health promotion. When
workers lack access to paid sick leave, they may go to work despite
being sick. Particularly in professions with direct customer contact,
presenteeism can induce negative externalities and infections of co-
workers and customers. Given the low influenza vaccination rates of
around 40% in the U.S. and 10 to 30% in the EU (Centers for Disease
Control and Prevention, 2014; Blank et al., 2009), workplace presen-
teeism is one important channel through which infectious diseases
spread. Worldwide, seasonal influenza epidemics result in 3 to 5 mil-
lion severe illnesses and an estimated 250 to 500 thousand deaths;
in the U.S., the flu-associated death count ranges from 3 to 49 thou-
sand per year (World Health Organization, 2014; Centers for Disease
Control and Prevention, 2016). Moreover, recent evidence suggests
that influenza during pregnancy can lead to negative outcomes for
exposed offspring (Schwandt, 2017).

This paper is one of the first to study the effects of sick pay
mandates in the U.S. (Ahn and Yelowitz, 2015; Pichler and Ziebarth,
2016a; Stearns and White, 2016, are exceptions). Existing studies
find that employees adjust their workplace attendance to variations
in sick pay (Johansson and Palme, 1996; Johansson and Palme, 2005;
De Paola et al., 2014; Ziebarth and Karlsson, 2010; Ziebarth and
Karlsson, 2014; Dale-Olsen, 2014; Fevang et al., 2014). Other papers
in the sick leave literature identify general determinants (Barmby et
al., 1994; Markussen et al., 2011), investigate the impact of probation
periods (Riphahn, 2004; Ichino and Riphahn, 2005), culture (Ichino
and Maggi, 2000), gender (Ichino and Moretti, 2009; Gilleskie, 2010),
income taxes (Dale-Olsen, 2013), and unemployment (Askildsen et
al., 2005; Nordberg and Røed, 2009; Pichler, 2015). There is also
research on the impact of sickness on earnings (Sandy and Elliott,
2005; Markussen, 2012).

In particular, this paper extends the small economic literature on
presenteeism in the workplace (Aronsson et al., 2000; Chatterji and
Tilley, 2002; Brown and Sessions, 2004; Johns, 2010; Böckerman and
Laukkanen, 2010; Markussen et al., 2012; Hirsch et al., 2015; Ahn and
Yelowitz, 2016). Although various definitions of presenteeism exist
(Simpson, 1998), it most commonly refers to going to work despite
being sick. Pauly et al. (2008) ask 800 U.S. managers about their views
on employee presenteeism with chronic and acute diseases. Pich-
ler (2015) provides evidence for the hypothesis that presenteeism is
procyclical due to a higher workload during economic booms. And
Barmby and Larguem (2009) exploit daily absence data from a single
employer and estimate absence determinants as well as transmis-
sion rates of contagious diseases, linking the estimation approach to
an economic model of absence behavior.

This paper also adds to the literature on the determinants and
consequences of infectious diseases, vaccinations, and epidemics
(Mullahy, 1999; Bruine de Bruin et al., 2011; Uscher-Pines et al.,
2011; Ahn and Trogdon, 2015). For example, Maurer (2009) mod-
els supply and demand side factors of influenza immunizations,
whereas Karlsson et al. (2014) empirically assess the impact of the
1918 Spanish flu on economic performance in Sweden. Stoecker et
al. (2016) find an 18% increase in influenza deaths for the elderly in
counties whose teams participate in the Super Bowl. Their findings
suggest that large events are an important underlying mechanism for
influenza transmission. Adda (2016) shows that reductions in inter-
personal contacts, e.g., through school closures or the shut-down of
public transportation, reduce transmission rates.

Although related and sometimes combined in laws, sick pay
schemes differ crucially from parental leave schemes (Gruber, 1994;
Ruhm, 1998; Waldfogel, 1998; Ruhm, 2000; Rossin-Slater et al.,
2013; Lalive et al., 2014; Carneiro et al., 2015; Thomas, 2015; Dahl
et al., 2016) due to the negative externalities induced by contagious
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presenteeism in combination with information frictions about the
type and extent of the disease.

3. Evidence from U.S. sick leave reforms

The U.S. has one of the least generous sick leave systems of all
industrialized countries. Using high-frequency data from Google Flu
at the weekly level over more than a decade, this section assesses the
impact of city-level sick pay mandates on influenza-like disease rates
in the U.S.

3.1. The U.S. sick leave landscape

About half of the U.S. workforce lacks access to paid sick leave,
particularly low-income employees in the service sector (Heymann
et al., 2009; Susser and Ziebarth, 2016). Appendix Table A1 provides
a summary of recent sick pay reforms at the city level. The details of
the bills differ from city to city but all sick pay schemes are employer
mandates. Small firms are sometimes exempt. Employees “earn”
paid sick leave credit (typically one hour per 30–40 h worked) up to
nine days per year; this credit rolls over to the next calendar year if
unused. Because employees need to accrue sick days, most sick pay
schemes explicitly state a 90 day accrual period. However, the right
to take unpaid sick leave is part of most sick pay mandates. Note
that gaining the right to take unpaid leave can be seen as a normal-
ization and represents an increase in sick leave benefits because the
right to take unpaid leave decreases the likelihood of being dismissed
when calling in sick. Also note that these sick pay mandates do not
require (or allow) employers to require doctors’ notes as a precon-
dition for taking sick leave (Polsky, 2016; New York City Consumer
Affairs, 2016).

As Table A1 shows, San Francisco was the first city to man-
date paid sick leave on February 5, 2007. Washington, D.C., followed
on November 13, 2008, and extended the coverage to temporary
workers and tipped employees effective February 22, 2014. Seattle
(September 1, 2012), Portland (January 1, 2014), New York City (April
1, 2014), Newark (May 29, 2014) Philadelphia (May 13, 2015), and
Oakland (March 2, 2015) followed.

3.2. Using Google Flu data to test for changes in infections

We use Google Flu Trends data at the city level for each week from
2003 to 2015. Google search queries can be used via an algorithm to
mimic actual ILI rates very accurately (Carneiro and Mylonakis, 2009;
Ginsberg et al., 2009). Because the governmental Center for Disease
Control and Prevention (CDC) does not provide ILI rates at the city
level, we use Google Flu data to test for city-level changes in infection
rates as a result of sick pay mandates. We use the data as provided
by Google Flu (2015).

Our Google Flu sample contains the weekly ILI rates of all major
U.S. cities—81 in total—from 2003 to 2015 (Appendix Table A2). We
include data for most cities starting September 28, 2003. The end
date for all cities is July 26, 2015.1 This results in 48,333 city-week
observations. We also create a second sample that aggregates the
data at the monthly level and has 11,157 city-month observations.

3.2.1. Outcome variable
Google Flu replicates the official CDC ILI rate per 100,000 doc-

tor visits via an (unknown) algorithm. The mean for the city sample

1 We omit New Orleans, which has missing information due to Hurricane Katrina.
We also omit cities that were not treated through a city mandate but a state mandate,
and we omit cities that are in close proximity of the treated cities due to potential
spillovers.These 15 disregarded cities are gray in Table A2.

is 1913 ILI cases per 100,000 doctor visits. We take the natural
logarithm of this measure as dependent variable.

The reason for the normalization of the ILI rate by doctor visits is
that its CDC benchmark measure has the same normalization. Con-
sequently, the ILI rate can be interpreted as the “diagnosed” ILI rate.
As U.S. sick pay mandates do not require (or allow) a doctor’snote,
doctor visits should not increase due to the mandates. If that was
nevertheless the case, our estimates would represent lower bounds.

3.2.2. Treatment and control groups
Table A1 (Appendix) lists all cities that implemented sick pay

mandates between 2006 and 2015. All seven cities listed and Wash-
ington D.C. are treated units and the remaining metropolitan areas in
Appendix A2 are control units.

In addition to Google Flu data, we use data from the Bureau of
Labor Statistics (BLS, 2015) to control for the monthly unemploy-
ment rate in each city. The unit of observation in the BLS data equals
the unit of observation in the Google Flu data. Accordingly, we merge
in the BLS unemployment rates at the city-month level with the
Google Flu data.

3.2.3. Assessing Google Flu measurement error
Lazer et al. (2014) report that Google Flu would overestimate

actual ILI rates. The media eagerly picked up the story. By googeling
“Google Flu”, one finds reports about the “Epic Failure of Google Flu.”
This section assesses whether measurement error in the Google Flu
data could be a serious threat to our main findings. Note that the orig-
inal ambition of Google Flu was to predict epidemic outbreaks earlier
and faster than the governmental CDC. Given Lazer et al. (2014)
and the media reports, Google obviously accepted that this objective
may have been overly ambitious. However, we exploit Google Flu
retrospectively to test for changes in infection rates and do not intend
to make any predictions.

First of all, even if systematic over- or underestimation occurred,
it should not be a threat to our estimates as long as this bias is not
correlated with the introduction of sick pay mandates at the city
level. Our main model is a rich fixed effects specifications with 80 city
and 617 week-year fixed effects that net out time-variant seasonal
trends in influenza activity as well as time-invariant regional effects.

Second, one could argue that more people were searching for sick
leave information after the laws were implemented. However, even
if this was the case, Google Flu would simply overestimate the true
ILI rate after the mandates and our treatment effects would be down-
ward biased and lower bounds. Below we conduct several robustness
checks to check for the validity of this hypothesis.

Third, we formally test whether there is evidence that Google Flu
over- or underreports are correlated with the reforms. For this test,
we acquired official CDC data on ILI cases per 100,000 doctor vis-
its. These data are available on the weekly level and the level of the
10 HHS regions (but not at the city level). We aggregate our Google
Flu data and construct an equivalent dataset. Fig. 1a plots both time
series. The vertical lines represent the implementation of all sick pay
mandates during this time, both city and state mandates (e.g. Con-
necticut (Jan 1 2012), California and Massachusetts (July 1 2015)). As
seen, one does not observe any trend in the measurement error, but
single spikes here and there, some of which represent an overesti-
mation of the true ILI rate. Particularly striking is the huge spike in
the second half of 2012 that triggered the media debates about the
“Epic Failure of Google Flu” (Lazer et al., 2014). However, as seen, this
seems to have been a single outlier that is not particularly worrisome
in our model with week fixed effects.

Fig. 1b plots the difference in residuals between both datasets
(CDC vs. Google Flu) after regressing each ILI rate on 617 week and
9 HHS region fixed effects. In other words, Fig. 1b provides a visual
assessment of the differences in the remaining variation by week and
region after netting out seasonal and regional effects. The thin sold
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Fig. 1. Google Flu measurement error.
Note: Panel a shows official ILI cases per 100,000 doctor visits as reported by the CDC
and by Google Flu. CDC data are available at the weekly level for 10 HHS regions. Panel
b plots the difference in residuals between the two datasets (CDC vs. Google Flu).
Residuals are calculated for both datasets separately by regressing the ILI rate on a set
of 617 week fixed effects and 9 HHS region fixed effects. The lines and dots represent
different HHS regions which include the treatment regions. The vertical lines repre-
sent the implementation of the sick pay mandates. HHS Region 1 includes Connecticut
and Massachusetts, HHS Region 2 New York City and Newark City, HHS Region 3
Philadelphia and DC, HHS Region 9 California and HHS Region 10 Oregon and Seattle.

black line represents HHS Region 1 which includes the treatment
states Connecticut and Massachusetts. The corresponding dashed
vertical line represents the date when the sick pay mandates were
implemented in both states. Equally constructed are the thick black
and gray colored lines and dots. As seen, there is no visual evidence
of any systematic correlation between week-region measurement
errors and the implementation of sick pay mandates. This visual
assessment is confirmed when we regress the differences in residuals
on a treatment-time indicator: With 6191 region-week observations,
the point estimate is 0.0247, positive and not statistically significant
(standard deviation: 0.0697).

As final robustness checks, we scrap Google Trends (2017) data at
the week-city level using the search terms (i) flu shot, (ii) back pain,
and (iii) gun shows. Using the search frequencies for these search
terms as outcome variables, we re-run our standard model. The (non-
significant) findings are discussed in the results section. We also

estimate placebo models pretending other major cities in the same
state were treated instead of the real ones.

3.3. Changes in influenza activity when employees gain sick pay
coverage

3.3.1. Parametric difference-in-differences model
The staggered implementation of sick pay schemes across space

and over time naturally leads to the estimation of the following
standard difference-in-differences (DD) model:

log(yit) = 0TreatedCityi × LawEffectivet

+dt + ci + Unempim + lit (1)

where log(yit) is the logarithm of the Google Flu (2015) rate in city i
in week of the year t. ci are 81 city fixed effects and dt is a set of 617
week fixed effects over almost 12 years. TreatedCityi is a treatment
indicator which is one for cities that implemented a sick pay mandate
between 2003 and 2015, see Table A1. The interaction with the vec-
tor LawEffectivet yields the binary variable of interest. The interaction
term is one for cities and time periods where a sick pay scheme was
legally implemented (see Table A1, column (3)). In addition to the
rich set of city and time fixed effects, we control for the monthly BLS
unemployment rate at the city level, Unempim. The standard errors
are routinely clustered at the city level (Bertrand et al., 2004) but the
standard errors obtained by bootstrapping are very similar (available
upon request). Thus this empirical specification allows us to estimate
0—the effect of mandated sick pay on the population ILI rate.

Event study. To produce an event study graph, we replace the
binary LawEffectivet time indicator with one that continuously counts
the number of days until (and from) a law became effective—from T
=−24 months to T = 0 and T = +24 months. This allows us to net
out, normalize and graphically plot changes in flu rates, relative to
when the laws were implemented. Event studies also help assess-
ing whether there is any evidence for confounding factors or an
endogenous implementation of the laws, for example, as a reaction
to pre-existing trends.

3.3.2. Empirical results
Event study graphs. We start the results section with the event

study graphs in Fig. 2. Panel a plots the coefficients of the continuous
time indicators counting the weeks before and after the laws became
effective in each city. Recall that the coefficient estimates are net of
city fixed effects and week-year fixed effects, i.e., correct for common
influenza seasonalities across U.S. metropolitan areas. Panel a shows
the result for the unbalanced panel. There is very little trending in
the two years before the mandates became effective; most coefficient
estimates are not statistically different from zero and fluctuate only
slightly around the zero line. Also, there is not much evidence for
anticipation effects.

Immediately after employees gained the right to take paid and
unpaid sick leave, the ILI rate decreases significantly. The estimates
for T = +18 months and beyond lack precision because they are
solely based on San Francisco (2007), D.C. (2008), and Seattle (2012).
New York City’s comprehensive bill became effective April 1, 2014—
about one year and fours months before the end of our observation
period at the end of July 2015. Portland’s bill took effect in January
2014, and Newark’s bill at the end of May 2014.

Hence, the observed rebound of infection rates to the zero line
is determined by a lack of precision and the early experiences in
San Francisco, D.C. and Seattle. More important, the rebound may be
driven by the confounding effect of the Great Recession for San Fran-
cisco (it is well documented that fear of unemployment increases
presenteeism (cf. Pichler, 2015; Schön, 2015). We test this hypothe-
sis by excluding San Francisco from the sample and re-running the
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Fig. 2. Event study—effect of city-level sick pay mandates on ILI rates.

model. Panel a of Appendix Fig. A1 shows that, indeed, the rebound
effect was at least partially driven by the Great Recession that kicked
in 2008.

The rebound effect could also be due to the unbalanced nature of
the sample and the fact that fewer units of observation remain in the
sample, the further we move to the right of T=0 in Fig. 2. Therefore,
as additional robustness checks, we (a) construct a balanced panel
where all cities are included at every point in time of the event study
(this excludes Oakland and Philadelphia). In addition, we (b) aggre-
gate the data at the city-month level to reduce noise and the impact
of single outliers. Panel b of Fig. 2 shows the event study for the bal-
anced sample at the monthly level, and Panel b of Fig. A1 shows the
event study for unbalanced panel at the monthly level.

Both additional event studies largely confirm our main findings.
The balanced panel event study at the monthly level shows no trend-
ing in the two pre-reform years and then a clear decrease in ILI rates
in the first year after the laws became effective (Fig. 2, Panel b). The
unbalanced event study at the monthly level (Fig. A1, Panel b) shows
the same pattern as the main event study in Panel a of Fig. 2.

Overall, the event study graphs illustrate a clear and significant
decrease in ILI rates at the population level after employees gained
sick leave coverage. This finding suggests that sick leave coverage
induces some sick and contagious employees to call in sick instead
of going to work sick, thereby reducing contagious presenteeism and
infection rates.

Main DD results. Panel A of Table 1 shows the main regression
results of the DD model in Eq. (1). Every column represents one

model where the first two columns represent the standard model.
The only difference between even and uneven columns is that the
former additionally control for the monthly BLS unemployment rate.
We find that controlling for the monthly unemployment rate barely
alters the results (the same is true when we generate and control for
additional covariates scraping Google Trends (2017)).

The main TreatedCity × LawEffective coefficients in the main
model in first two columns provide negative coefficient estimates
that are significant at the 5% level. The literal interpretation would
be that the ILI rate per 100,000 doctor visits decreases by about 6%
when employees gain access to paid (and unpaid) sick leave. This is
a weighted average over all seven treated U.S. cities in Table A1 as
well as a mix of short- and medium-term estimates. For three cities
(NYC, Portland, Newark), we cover more than a year of post-reform
influenza activity, and for three other cities (SF, DC, Seattle), we cover
at least three years of post-reform influenza rates. Here, the baseline
period is the entire pre-reform period since 2003 whereas the base-
line period of the event studies is the first week when the mandates
became effective.

To test for anticipation effects, columns (3) and (4) of Panel A in
Table 1 make use of city-specific dates indicating when the laws were
passed by the city legislature. Up to one year elapsed between the
passing and implementation of the laws (Table A1). It could be that
firms voluntarily implemented sick pay schemes ahead of the offi-
cial due date. However, as seen, columns (3) and (4) do not provide
much evidence that this was the case—the coefficients shrink in size
to about 3% and are not statistically significant any more.

The models in columns (5) and (6) make use of city-specific dates
indicating when the accrual period was over. As discussed, all laws
require employees to “earn” their sick days. Employees accrue one
hour of paid sick leave per 30 or 40 h of work, i.e., per full-time work
week. In addition, all laws specify a minimum accrual period of typ-
ically 90 days before employees can take paid sick leave for the first
time. Assuming that the first paid sick day can be taken after 12 full
work weeks, each earning employees one hour of sick pay, then full-
time employees can take 1.5 paid sick days after 90 days. Note that
the option to take unpaid sick leave is typically part of these sick pay
mandates.2 Letting the data speak, we can say that the decrease in flu
rates increases by one percentage point to −7% in columns (5) and
(6) of Panel A, suggesting that paid sick leave can be more effective
in reducing contagious presenteeism than unpaid sick leave.

Placebo estimates and robustness checks. Panel B of Table 1
provides placebo estimates. We run almost exactly the same mod-
els as in Panel A. However, instead of the treated cities we assign a
placebo treatment to “neighboring” cities in the same state. To avoid
the possibility of confounding spillovers, we require a distance of at
least 100 miles between the treated and placebo city, which results
in 13 placebo cities for the 7 treatment cities (see notes to Table 1).
Panel B of Table 1 shows that none of the six placebo estimates is
statistically significant.

Next, we scrap three search terms using Google Trends (2017)
data for the same set of U.S. cities and the same time horizon on the
weekly level. Unfortunately, not all 81 cities in Table A2 were avail-
able on Google Trends on a weekly basis for the entire time period.
Consequently, the eight models in Table 2 have slightly smaller sam-
ple sizes (but still enough statistical power). Moreover, the raw search

2 The Family and Medical Leave Act of 1993 (FMLA) covers employees with 1250 h
of work in the past year and at locations with at least 50 employees with unpaid leave
in case of pregnancy, own disease, or disease of a family member (e.g. Tominey, 2016).
Jorgensen and Appelbaum (2014) find that 49 million U.S. employees are ineligible for
FMLA, 44% of all private sector employees. The findings in Susser and Ziebarth (2016)
also suggest that many low-wage and service sector employees are either not aware
of this right, or—more likely—not covered by it. The majority of employees without
access to firm-provided sick pay likely gained access to both paid and unpaid sick leave
through the mandates listed in Table A1.
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Table 1
Effect of city-level sick pay mandates on ILI rates 2003–2015.

(1) (2) (3) (4) (5) (6)

Panel A: Main estimates
TreatedCity × LawEffective −0.0629∗∗ −0.0604∗∗

(0.0240) (0.0231)
TreatedCity × LawPassed −0.0307 −0.0278

(0.0249) (0.0252)
TreatedCity × ProbationOver −0.0704∗∗ −0.0682∗∗

(0.0298) (0.0286)
Panel B: Placebo estimates
TreatedCity × LawEffective −0.0072 −0.0100

(0.0296) (0.0303)
TreatedCity × LawPassed −0.0403 −0.0428

(0.0279) (0.0282)
TreatedCity × ProbationOver −0.0057 −0.0089

(0.0275) (0.0279)

Source: Google Flu (2015), own calculation and illustration. Standard errors in parentheses are clustered at the city level. The dependent variable is always the logarithm of the
ILI rate per 100,000 doctor visits as reported by Google Flu (2015). All regressions contain week-year fixed effects and city fixed effects as in Eq. (1). Each column represents one
model, estimated by OLS. N = 48,333 for Panel A and 48,505 for Panel B. Even numbered columns additionally control for the local monthly unemployment rate (BLS, 2015).
Treated cities in Panel A are listed in Table A1 together with the dates for LawEffective, LawPassed and ProbationOver. The placebo cities in Panel B are cities from the same state
but which are at least 100 miles distant. Specifically, we assign placebo treatments to Los Angeles, San Diego, San Jose, Irvine, Fresno and Sacramento, CA (instead of San Francisco
and Oakland, CA); Spokane, WA instead of Seattle, WA; Albany, Buffalo, and Rochester, NY (instead of New York City); Eugene, OR instead of Portland, OR; and Pittsburgh and
State College, PA (instead of Philadelphia, PA). The entire sample of cities considered is in Table A2.

∗ p < 0.1.
∗∗ p < 0.05.

∗∗∗ p < 0.01.

data contains many zeros which is why we run a generalized linear
model with a log link as suggested by Silva and Tenreyro (2006).

Specifically, as a benchmark, we replicate our main specification,
but use this smaller subsample of cities and a generalized log link lin-
ear model with the ILI rate in levels as dependent variable. Columns
(1) and (2) of Table 2 show that the results are almost identical to
those in the first two columns of Panel A in Table 1.

Columns (3) and (4) use Google searches for “flu shots” as out-
come measure. This is due to concerns that employers could have
“induced” their employees to get flu shots as a result of the reforms.
However, the point estimates are not statistically significant. The
same is true for “back pain” in columns (5) and (6)—a noncontagious
disease—as well as “gun shows” in columns (7) and (8)—an entirely
unrelated search term.

We also experimented with adding these three additional vari-
ables (flu shots, back pain, and gun shows) as covariates to our main
model. However, these search variables were not significantly cor-
related with ILI rates and the estimated treatment effects hardly
changed.

Summing up, all results together provide evidence that sick
pay reduces contagious presenteeism which reduces ILI rates. For
noncontagious diseases such as back pain, on the other hand, we do
not find evidence for a reduced incidence rate.

Discussion of effect sizes. Our main models in the first two
columns of Table 1 suggest reductions in population-level ILI rates

by between 6 and 7% after sick leave mandates were implemented
at the city level. Our model in the next section will provide theoret-
ical evidence of the underlying labor supply mechanisms: marginal
employees with contagious diseases will call in sick and stay at
home when the costs of taking sick leave decrease. Consequently,
social interactions of contagious employees decrease and hence the
infection rate in the population.

According to Susser and Ziebarth (2016), 35% of full-time employ-
ees and 45% of all employees were not covered by firm-specific sick
leave policies in 2011. Given the current population-employment
ratios (BLS, 2016), this means that roughly 20% of the population
gained access to sick leave coverage when cities passed such man-
dates (assuming that treated cities had average coverage rates). The
model above thus estimates Intent-to-Treat (ITT) effects at the city
level which represent an average over all 8 cities and post-reform
periods in the sample.

Per week and over the time period considered in this paper, the
CDC counted an average of 1655 confirmed ILI cases per 100,000
doctor visits (Centers for Disease Control and Prevention, 2016).
Because, in the US, the average number of doctor visits is about three
(Centers for Disease Control and Prevention, 2017), this implies that
a county with a population of 100,000 has 4965 ILI cases per year, or
close to 100 per week.

Thus, our back-of-the envelope calculation suggests that imple-
menting a sick pay mandate in a metropolitan area with 1 million

Table 2
Effect of city-level sick pay mandates on ILI rates and alternative outcomes 2003–2015.

ILI rate Flu shots Back pain Gun shows

(1) (2) (3) (4) (5) (6) (7) (8)

TreatedCity × LawEffective −0.061∗∗∗ −0.060∗∗∗ −0.135 −0.134 0.100 0.101 −0.134 −0.136
(0.023) (0.022) (0.083) (0.083) (0.085) (0.085) (0.155) (0.156)

N 39,510 39,510 39,510 39,510 39,510 39,510 39,510 39,510

Source: Google Flu (2015) and Google Trends (2017), own calculation and illustration. Standard errors in parentheses are clustered at the city level. The dependent variable is
shown in the column header. In the first two columns, it is the ILI rate as reported by Google Flu (2015). All regressions contain week-of-year fixed effects and city fixed effects
as in Eq. (1). Each column represents one generalized linear model with a log link. Even numbered columns additionally control for the local monthly unemployment rate (BLS,
2015). TreatedCity is a treatment indicator which is one for all cities listed in Table A1. The sample of cities considered is in Table A2.

∗ p < 0.1.
∗∗ p < 0.05.

∗∗∗ p < 0.01.
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inhabitants (i) provides sick leave coverage for 200,000 employees,
and (ii) prevents the transmission of around 3000 ILI cases per year
(4965 × 10 × 0.06 = 2979).

4. Identifying contagious presenteeism and negative
externalities

After having provided reduced-form evidence that sick leave
coverage reduces the ILI rate at the population level, this section
provides an analytical framework that illustrates the underlying
behavioral mechanisms.

4.1. Modeling contagious presenteeism and noncontagious
absenteeism behavior

We extend and build upon a mix of standard work-leisure mod-
els to theoretically study the absence behavior of workers (Allen,
1981; Brown, 1994; Barmby et al., 1994; Brown and Sessions,
1996; Gilleskie, 1998). Our model focuses on the trade-off between
employee absenteeism and presenteeism behavior. In particular, it
focuses on negative externalities due to contagious diseases. These
externalities stem from incomplete employer information about the
existence and the degree of contagiousness of employees’ diseases.
Because contagiousness is not perfectly observable by employers
(and customers), employers cannot prevent contagious employees
from working and thus cannot fully internalize the externalities.
However, we abstain from explicitly modeling the employer side and
the firm level below.3 We also abstain from analyzing general equi-
librium labor market effects. To ease the exposition of the model,
we first focus on a static model with myopic workers. Thus every
period workers decide whether to go to work or not, depending on
the implied utilities. In the context of this model, we analyze how
sick pay affects worker behavior and infections. In Appendix B, we
relax the assumption of workers being myopic.

A representative worker’s utility in the current period reads

l(s , c, l), (2)

where u represents the current utility, c ≥ 0 represents current con-
sumption, and l ≥ 0 represents current leisure. Utility increases in
consumption and leisure over the whole domain. The sickness level
is continuous but bounded, s ∈ [0, 1]. For s = 0 workers are in per-
fect health. Their maximum sickness level is s = 1. Utility decreases
over the whole domain of sickness.

Moreover, we assume

∂2l

∂s∂ l
> 0 and

∂2l

∂s∂c
≤ 0. (3)

The first cross derivative implies that leisure (or recuperation) time is
more valuable the more severe the disease. The second cross deriva-
tive implies that consumption is less valuable the more severe the
disease (or entirely independent).

Hours of work are defined as h > 0 and T is the total amount
of time available. Workers consume their entire income from work
w or sick pay s = aw, a ∈ [0, 1).4 If contagiousness and sickness
were perfectly observable, we would obtain the first best solution.
However, due to information frictions, the employer offers a contract

3 This could include employer signaling, peer effects at the firm level, or discrimi-
nation against unhealthy workers.

4 Note that w also includes career opportunity costs. Scoppa and Vuri (2014) find
that absent workers are at a higher risk of getting laid off. Also, workers who call in
sick a lot may not get promoted and may not receive bonus payments. Thus, even a
nominal replacement rate of 100% (like in Germany) implies a < 1.

with payments w and s depending on whether workers are giving up
their leisure time T − h or not.

The utility differential between work and work absence can be
written as D = l(s , w, T−h)−l(s , s, T). For D > 0 workers will come
to work, while they will stay at home for D < 0. To ensure that the
worker works when in perfect health, we assume D > 0 for s = 0.

For a given replacement rate a, the sickness reservation level s∗
a

can then be derived from5

l(s∗, w, T − h) − l(s∗, aw, T) = 0. (4)

If s > s∗
a workers call in sick. They work if s < s∗

a .

4.1.1. Changes in sick pay
F(s) is the cumulative density function of s for s > 0. Assuming

a worker population of size one, at any point in time, a share of p
workers is sick (s > 0) and a share of 1 − p workers is healthy (s =
0). It follows that for a given replacement rate a, the share of workers
at work P is the sum of healthy workers and workers with s < s∗

a ,
thus P = 1 − p + pF(s∗). Workers with s > s∗

a call in sick and the
share of workers on sick leave A is therefore A = p(1 − F(s∗

a)).
How do changes in sick pay affect the sickness reservation level

s∗
a? Applying the implicit function theorem to Eq. (4), we obtain (see

Appendix B1)

∂s∗
a

∂a
< 0. (5)

More sick pay decreases the sickness reservation level. Ceteris
paribus, more workers call in sick.

Next, we analyze how the shares of absent and present workers
change when sick pay changes. We focus on absent workers but the
exact opposite holds for present workers as both shares add up to 1.
Taking the total derivative of A with respect to the replacement rate,
we obtain

dA
da

=
∂p
∂a

(1 − F(s∗
a)) + p

∂(1 − F(s∗
a))

∂a
. (6)

For now, we assume that the share of sick workers, p, is exoge-
nous and thus ∂p

∂a
= 0. Because of Eq. (5), the second term of Eq. (6) is

positive and the share of workers on sick leave increases as sick pay
increases. Traditionally, this effect is labeled moral hazard. Workers
take more sick leave when sick pay becomes more generous and vice
versa.

4.1.2. Two types of diseases and negative externalities due to
“contagious presenteeism”

Next, let us assume that two types of (mutually exclusive) dis-
eases exist: (1) contagious diseases denoted by subscript c (e.g., flu)
and (2) noncontagious diseases denoted by subscript n (e.g., back
pain). The share of sick workers equals the sum of workers with
contagious and noncontagious diseases p = pn + pc.6

As for noncontagious diseases, pn is exogenous. Thus, changes in
sick pay will only result in behavioral labor supply changes dAn

da =

pn
∂(1−Fn(s∗

a))
∂a

.

As for contagious diseases, pc depends on the share of contagious
workers who work. Henceforth, “contagious presenteeism” is when
workers with contagious diseases work. Here, the first term of Eq. (6),

5 To avoid unnecessary brackets for function values, we write s∗(a) = s∗
a . There

exists a unique s∗
a because of Eq. (3) and as utility increases in consumption and

leisure and decreases in sickness.
6 In principle, noncontagious diseases represent a special case of contagious dis-

eases, where infections are equal to zero.
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representing additional infections, becomes relevant as well; how-
ever, it is outside the scope of this paper to model the transmission
rate of contagious diseases explicitly (Philipson, 2000; Pichler, 2015).
As shown in Eq. (5), more sick pay leads to a lower sickness reserva-
tion level and thus fewer infectious workers will work. When fewer
contagious workers work who could infect coworkers or customers,
infections and the associated negative externalities decrease. It thus
holds ∂pc

∂a
< 0 for the first term of Eq. (6).

The behavioral labor supply response (the second term in
Eq. (6), commonly called moral hazard, can be decomposed into
(a) the change in contagious presenteeism and (b) the change in
noncontagious absenteeism:

p
∂ (1 − Fc (s∗

a))

∂a
= pc

∂ (1 − Fc (s∗
a))

∂a︸ ︷︷ ︸
>0

+ pn
∂ (1 − Fn (s∗

a))

∂a︸ ︷︷ ︸
>0

(7)

It is not surprising that moral hazard is increasing in sick pay. How-
ever, the key insight here is that this increase coincides with a
decrease in contagious presenteeism which leads to a (normatively
desirable) reduction in infections.

4.1.3. Changes in sick pay and sick leave: graphical representation
To simulate the German sick pay reform of 1996 in the next

section, Fig. 3 illustrates the effects of a cut in sick pay. Panel a
shows the case for noncontagious diseases. Initially with a = a0,

a) Noncontagious Diseases

b) Contagious Diseases

Fig. 3. Graphical representation and classification of working and absent employees.
Note: Panel a shows the share of employees with a noncontagious disease. After the
sick pay cut from a = a0 to a = a1 with a0 > a1, noncontagious absenteeism
decreases. The black area shows individuals who are on sick leave even without sick
pay (a=0). Panel b shows the case for contagious diseases. A sick pay cut increases
contagious presenteeism and pc , represented by the outward shift of the curve.

the share of workers who engage in noncontagious absenteeism
behavior—indicated by the sum of the two dark gray areas—is quite
large. As sick pay decreases to a = a1, more workers with noncon-
tagious diseases come to work and the noncontagious absenteeism
rate decreases.

Panel b shows the case for contagious diseases. As sick pay
decreases, more workers with contagious diseases come to work and
contagious presenteeism increases. Because of additional infections,
the share of individuals with a contagious disease, pc, increases, as
represented by the outward shift of pcf(s).

4.1.4. Changes in sick pay and moral hazard: analytical derivation

bnt = Ant−An0
An0

denotes the percentage change in noncontagious

absenteeism when sick pay decreases from a = a0 to a = at with a0

> at. bnt thus represents the cumulative reform effect at t or formally

bnt =
1

An0
pn

(
Fn

(
s∗
a0

)
− Fn

(
s∗
at

))
< 0. (8)

Similarly, bct = Act−Ac0
Ac0

denotes the percentage change in conta-

gious absenteeism when sick pay decreases

bct =
1

Ac0

⎛
⎜⎜⎝pc0

(
Fc

(
s∗
a0

)
− Fc

(
s∗
at

))
︸ ︷︷ ︸

<0

+ (pct − pc0)
(
1 − Fc

(
s∗
at

))
︸ ︷︷ ︸

>0

⎞
⎟⎟⎠ . (9)

The first element is negative and represents the increase in conta-
gious presenteeism due to a cut in sick pay. It represents the decrease
in absenteeism and is a function of the initial share of workers with
a contagious disease, pc = pc0. The second element represents the
increase in absenteeism due to additional infections as a result of the
increase in contagious presenteeism (with pc = pct > p0). Depending
on the share of newly infected individuals due to additional con-
tagious presenteeism, the increase in sick leave due to additional
infections can offset or even overcompensate the decrease in sick
leave due to the sick pay cut (cf. Stearns and White, 2016). For
example, if—at the firm level—one additional worker exhibits con-
tagious presenteeism due to a sick pay cut, then the net effect of
the sick pay cut would be zero if this additional worker infected one
additional co-worker who then called in sick.

To empirically identify contagious presenteeism, we need one
additional assumption:

Fn

(
s∗
at

)
− Fn

(
s∗
a0

)

1 − Fn

(
s∗
a0

) =
Fc

(
s∗
at

)
− Fc

(
s∗
a0

)

1 − Fc

(
s∗
a0

) . (10)

This implies that the share of workers between the two indiffer-
ence points is identical for contagious and noncontagious diseases.
In other words: if one is willing to assume that the share of marginal
compliers is identical across the two disease types, then new infec-
tions are identified by comparing the labor supply elasticities for
contagious and noncontagious diseases. This assumption would be
violated if the disutilities differed systematically between contagious
and noncontagious diseases. If, for example, all contagious diseases
were mild (and the labor supply elasticities for those diseases large)
and all noncontagious diseases severe (and the labor supply elasticity
small), the assumption would be violated.

Using Eq. (10), we can rewrite bct as

bct = bnt +
1

Ac0

(
(pct − pc0)

(
1 − Fc

(
s∗
at

)))
. (11)

As seen, bct and bnt only differ by the share of newly infected indi-
viduals, weighted by the share of workers on sick leave prior to the
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sick pay cut. Moreover, as seen in Eq. (9), this share is positive and
thus, under the existence of contagious presenteeism, it holds that
bnt < bct.

Note that by definition, bnt < 0. However, in case of contagious
diseases, the sign of bct is ambiguous. For a very contagious dis-
ease, bct might become positive. Therefore the sign of bct remains an
empirical question.

Finally, the total percentage change in the absence rate, bt =
At−A0

A0
, is

bt =
1

A0

(
pn

(
Fn

(
s∗
a0

)
− Fn

(
s∗
at

)
+ pc0

(
Fc

(
s∗
a0

)

−Fc
(
s∗
at

))
+ (pct − pc0)(1 − Fc

(
s∗
at

)))
. (12)

The Appendix discusses the assumptions of the model and poten-
tial model extensions.

4.2. Identifying contagious presenteeism and negative externalities
empirically

The paper uses two empirical tests from two different coun-
tries to provide (indirect) evidence on the existence of contagious
presenteeism.

4.2.1. Using population-level influenza rates to identify contagious
presenteeism

In Section 3, we applied a reduced-form test of whether infections
decreased after workers gained access to sick pay in the U.S. Sick pay
mandates increase sick pay which, according to our model and a rich
literature (Section 3.1), increases the absence rate

(
∂s∗

a
∂a

< 0
)

.

Furthermore, our model predicts that access to sick pay reduces
contagious presenteeism, which reduces infections. In this subsec-
tion, we denote the share of individuals who have a contagious
disease under no sick pay coverage with pc = pc0. When sick pay is
mandated, the share of individuals with a contagious disease will be
different; formally we have now pc = pct with pct < pc0 once sick pay
is introduced. The reduction in contagious diseases, 0t, is thus

0t = pct − pc0. (13)

In Section 3 we empirically tested whether 0t = 0; i.e., whether
sick pay coverage reduces infectious diseases at the population level.
We found 0t < 0 yielding empirical evidence for a reduction in
contagious presenteeism.

4.2.2. Using disease-specific sick leave rates to identify contagious
presenteeism

In the next section, we will directly implement the model and its
identifying test. To do so, we need data on sick leave behavior and
variation in sick pay that affects different groups of workers. Then we
can estimate the causal effect of changes in sick pay on workplace
absenteeism and empirically identify bt.

Moreover, if one can empirically identify two different disease
categories, c and n, and the share of workers who call in sick due
to contagious and noncontagious diseases, one could test whether
bnt < bct, as suggested by Eq. (11). Under the identifying assumption
in Eq. (10), the differential bct − bnt would then identify additional
infections due to contagious presenteeism. These represent negative
externalities under lower sick pay.

5. Evidence from German sick leave reforms

Our first results section, Section 3, provided reduced-form evi-
dence from the U.S., a country where many workers have no sick
pay coverage. We found that more sick pay coverage reduces the ILI

rate at the population level. Then, Section 4 developed a simple the-
oretical illustration of the potential underlying worker reactions to
changes in sick pay, and how these relate to changes in infections.
The model section also proposed an identifying test of changes in
infections and contagious presenteeism, given a (rather strong) main
identifying assumption. The main purpose of this final result section
is to illustrate how to implement the proposed test of Section 4 in
practice.

The data that we use in this section are not ideal and may not
meet the high standards required for causal identification in other
settings. However, the data have several strengths: (a) they cover a
reform that cut sick pay in Germany, a country with a very generous
federal sick pay mandate. (b) They allow us to identify treatment and
control groups that were affected differently by the reform. (c) Most
important, they include normalized sick leave episodes by type of dis-
ease. Moreover, the disease type is not based on self-reports, but on
“official” doctor diagnoses.

5.1. The German employer sick pay mandate

Germany has one of the most generous universal sick leave sys-
tems in the world. The system is predominantly based on employer
mandates. In Germany, employers are mandated to continue wage
payments for up to six weeks per sickness episode.7 When employ-
ees fall sick and want to take sick leave, they have to inform their
employer immediately about their sickness and the expected dura-
tion. From the fourth day of a sickness episode, a doctor’s note is
legally required, but employers can ask for a note from day one. Note
that the sickness itself remains confidential. Employees just have to
inform their employer that they are sick, not why; the standardized
public insurance form for doctors’ notes does not indicate the type
of disease, which is only confidentially transmitted to the sickness
fund. This is important because the model assumes that the type of
disease is unobservable to the employer.

5.2. The sick pay cut at the end of 1996

In 1996, the center-right government passed a Bill to Foster
Growth and Employment, effective October 1, 1996. Ziebarth and
Karlsson (2010) and Pichler and Ziebarth (2016b) discuss the insti-
tutional details. The most important provision of the bill reduced
the minimum statutory sick pay level from 100% to 80% of foregone
wages. We solely focus on the implementation at the industry level
among private sector employees who were covered by collective
agreements.

We reviewed all collective agreements that existed during the
time of the sick pay reforms and categorized industries accordingly
(Ziebarth and Karlsson, 2010; Hans Böckler Stiftung, 2014). One can
distinguish three different groups:

Group I includes the construction sector whose collective agree-
ment covered about 1.1 million private sector workers. When
the law became effective at the end of 1996, the existing collec-
tive agreement did not include any explicit provision on sick pay,

7 From the seventh week onward, sick pay is disbursed by the “sickness funds” and
lowered to 70% of foregone gross wages for those who are insured under Statutory
Health Insurance (SHI). SHI long-term sick pay was cut from 80 to 70% of for-
gone gross wages in 1997. See Ziebarth (2013) for details and evidence that this
(moderate) cut did not induce significant behavioral reactions among the long-term
sick.
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which is why all federal regulations applied at the time of the
bill’s implementation. A negotiated compromise between unions
and employers validated the cut but only for the first three days
of a sickness episode. The new agreement became effective July 1,
1997.
Group II includes about 4.4 million employees and is quantita-
tively the largest group. It counts 11 industries as specified in
Table C2, among them the steel, textile and automobile indus-
try. Union leaders in these industries managed to maintain the
symbolically important 100% sick pay level. However, in return,
they agreed to exclude paid overtime from the basis of calcula-
tion for sick pay. Hence employees with many overtime hours
experienced sick pay cuts.
Group III includes seven industries (see Table C2). These indus-
tries’ collective agreements specified 100% sick pay already pre-
reform. In contrast to Group II, these industries did not exclude
overtime payments from the basis of calculation. Hence the 4
million employees in these industries serve as control group.

5.3. Using data on disease-specific sickness absence to test for elasticity
differences

In Germany, information on certified sickness absence—including
diagnoses—are collected by the nonprofit SHI sickness funds. In 1995,
a total of 960 SHI sickness funds existed; 72% of them were company-
based health plans (German Federal Statistical Office, 2014; Schmitz
and Ziebarth, 2017; Pilny et al., 2017). Employees covered by these
health plans were likely also covered by binding collective agree-
ments (Pichler and Ziebarth, 2016b).

The Federal Association of Company-Based Sickness Funds
(BKK Dachverband) publishes annually sick leave statistics of
their employed enrollees who are mandatorily insured under
SHI (Bundesverband der Betriebskrankenkassen (BKK), 2004).8

The Krankheitsartenstatistik reports aggregated sick leave episodes
separately by gender, age group, industry, and main diagnosis
according to the International Classification of Diseases (ICD). We col-
lected and digitized information from annual reports between 1994
and 1998 to study the effects of the sick pay cut.9 Note that the data
are only available at the industry level for 12 main disease categories
as defined by the ICD; unfortunately, the data are not available at the
individual level and we have no discretion over how to categorize
the disease groups. The descriptives of the disease groups used are in
Table C1 (Appendix).

As seen, in total, we count 1080 observations. Each observation
represents one industry, year and sickness category. We make use
of 5 years and 18 industries, which adds up to 90 industry-year
observations per sickness category.

Our outcome variable is the sick leave rate which measures sick
cases per 100 workers. We take the logarithm of each variable, mainly
because bnt and bct (Eqs. (8) and (9)) are expressed in percent and
we would like to link the model to the empirical part as closely as
possible. Fig. 4 shows this dependent variable and a relatively sym-
metric, close to normal, distribution. The untransformed sick cases
per 100 workers variable has a mean of 126, implying 1.26 sick leave

8 BKKs are not obliged to contribute to the Krankheitsartenstatistik. However, the
overwhelming majority does, probably out of tradition to contribute to this important
statistic that has been existing since 1976. In 2013, more than 90% of all mandatorily
insured BKK enrollees were covered by the Krankheitsartenstatistik (BKK, 2004; Ger-
man Federal Statistical Office, 2014). There is no evidence that this share varied
systematically due to the reforms.

9 We cannot use earlier data due to a lack of measurement consistency. Although
the data contain information on the duration of sickness spells by disease groups, we
decided to not exploit this information as the theoretical predictions of the reforms on
the duration of spells are ambiguous.
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Fig. 4. Distribution of logarithm of sick leave cases per 100 workers and year.

cases per year and worker across all industries and years. However,
the variation ranges from 90 to 163 (Table C1).

The largest sick leave disease category is respiratory diseases, ICD
codes J00-J99, making up 37 sick cases per 100 workers, or 29% of
all cases. We can infer from separate statistics on “the most common
singular diagnoses” of the Krankheitsartenstatistik that a third of all
respiratory diseases are due to “bronchitis (J20)” and a quarter is due
to “influenza (J09).” Another fifth are caused by “acute upper respi-
ratory infections (J06).” Unfortunately, the relevant data by industry
are not reported at this fine level but only at the level of the main dis-
ease category, i.e., in this case respiratory diseases. We conclude that
respiratory diseases are a mixed category and include contagious as
well as noncontagious diseases.

The second largest sick leave disease category is musculoskeletal
diseases (M00-M99), with 15 cases per 100 workers, or almost 12% of
all cases. These have the reputation to be particularly prone to shirk-
ing behavior. The main subcategory in this group is “dorsalgia - back
pain (M54)” making up 70% of all musculoskeletal cases. Below we
use musculoskeletal diseases as the main representative category for
noncontagious diseases.

Next in terms of their incidence relevance is injuries and poisoning
(S00-T98, 20%), digestive diseases (K00-K93, 14%), followed by infec-
tious diseases (A00-B99, 5%). Infectious diseases mainly include “viral
infections (B34)” and “infectious gastroenteritis (A09).” Over 80% of
all infectious diseases fall in these two subcategories. Below we use
infectious diseases as the main representative category for contagious
diseases.

5.4. Nonparametric graphical evidence

Fig. 5 shows the “Development of Sick Leave Rates by Treatment
Groups over Time.” Fig. 5a displays the total sick leave rate, Fig. 5b
displays musculoskeletal diseases, and Figs. 5c and d display respira-
tory and infectious diseases, respectively. The reference year, 1994,
is indexed as 100 and the black vertical bar indicates the reform.

Fig. 5 serves two main purposes: To examine the plausibility of
the common time trends assumption, and to illustrate the main find-
ings and help understand how they identify contagious presenteeism
within the context of our model. Musculoskeletal sick leave cases
(e.g., back pain, Fig. 5b) represent the category “non-infectious dis-
eases”, whereas infectious sick leave cases (Fig. 5d) represent the
category “infectious diseases” in our model. Respiratory sick leave
cases (Fig. 5c) is a mixed category.

Fig. 5 shows the following: First, in general, the data support the
common time trend assumption. Despite some minor spikes here
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Fig. 5. Development of sick leave rates by treatment groups over time.
Note: The solid line represents Group I whose sick pay was cut from 100% to 80% at the end of 1996. The short dashed line represents Group II who experienced a “soft cut.” The
long dashed line represents Group III whose sick pay was not cut. For more information about the sick pay reforms, see main text.

and there, all three groups in the four graphs develop in a relatively
parallel manner over the pre-reform years.

Second, with the exception of infectious diseases, the other three
graphs provide strong evidence of a significant reform effect for
treatment Group I. Fig. 5a, plotting the general sick leave rate, shows
a 20% decrease post-reform. This is in line with the other two studies
evaluating this reform using SOEP data (Ziebarth and Karlsson, 2010;
Puhani and Sonderhof, 2010).

Third, the effect of the soft sick pay cut—excluding overtime from
the basis of calculation—for treatment Group II was probably minor.
In any case, the aggregated industry-year level data are not pow-
erful enough to exploit this reform element to identify contagious
presenteeism.

Fourth, as for musculoskeletal diseases (“back pain”) in Fig. 5b—
our noncontagious disease category: the decrease is almost twice
as large and around −40% for treatment Group I. As for respiratory
diseases in Fig. 5c—the mixed category that also includes flu and
common colds: the decrease is only around −10%.

Finally, as for infectious diseases in Fig. 5d—the only clean conta-
gious disease category: we do not observe much evidence of a reform
effect.

Summing up, (i) here is clear evidence that the sick leave rate
decreased significantly following the sick pay cut in Germany,
bt < 0. In addition, we (ii) find a large decrease in back pain
cases, suggesting that shirking may have decreased, bnt < 0.

(iii) The annual aggregated labor supply elasticity for contagious
diseases appears to be smaller (close to zero) than the elas-
ticity for noncontagious diseases. Thus, there is evidence that
bnt < bct holds up. (iv) The increase in presenteeism appears to
slightly outweigh additional infections bct < 0. Finally, because
(v) bnt − bct < 0, there is evidence that the sick pay cut may
have increased infections through more contagious presenteeism
behavior.

5.5. Parametric difference-in-differences model

Next we estimate a conventional parametric DD model separately
for the different disease categories:

log(yit) = b1GroupIi × post

+b2GroupIIi × post + dt + ci + lit (14)

where log(yit) is the sick leave rate for industry i in year t. ci are 18
industry fixed effects and dt are 4 year fixed effects. The standard
errors are clustered at the industry level. The reference period is 1994
to 1996.

GroupIi and GroupIIi are binary treatment indicators which are
one for industries that were affected by the sick pay reform
(Table C2). Group I experienced a sick pay cut from 100% to 80%,
while Group II experienced a “soft cut”—with paid overtime excluded
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from the basis of calculation. Group III was not affected, serving
as the control group. Thus b1 identifies the effect of the sick pay
cut for Group I relative to Group III (over the time period 1997-
1998 vs. 1994-1996). Moreover, b2 identifies the effect of excluding
paid overtime for Group II relative to Group III (over the same time
period).

5.5.1. Decomposing total labor supply adjustments via disease-specific
elasticities

Estimating b̂t, b̂nt, and b̂ct. Table 3 shows the results of the DD
model using the four different outcome variables in Fig. 5, plus sick
leave due to injuries and poisoning. Each column is one model as in
Eq. (14). For illustrative purposes, we only display b1 and b2. Note
that the empirical models are closely linked to the theoretical model
in Section 4. For example, b1 in the first row of the first column of
Table 3 estimates bt in Eq. (12).

We summarize Table 3: First, the overall sick leave rate decreased
by about 18% when sick pay was cut from 100 to 80% (column (1)).
This is b̂t in Eq. (12) and represents the total labor supply effect, tra-
ditionally called “moral hazard.” As seen, b1 is highly significant and
clearly smaller than zero. Related to the decrease in sick pay of about
20%, the sickness rate elasticity with respect to the replacement rate
would be about 1.

Second, as already inferred from Fig. 5, all b2 interaction effects
are imprecisely estimated and relatively small in size. Hence, in a
regression framework with industry and year fixed effects, we can-
not identify any significant changes in the sick leave rate for Group
II. This is at least partly due to the coarse industry-year data.

Third, musculoskeletal diseases, representing the noncontagious
disease category n in our model, decreased overproportionally by
30% (column (4)). This fits the common perception that the labor
supply of this category is particularly elastic and prone to shirking
behavior. Eq. (8) of our model illustrates the analytical derivation of
bnt, which is represented by b1 in column (4) of Table 3. It is the
decrease in noncontagious absenteeism when sick pay decreases.

Finally, infectious diseases, representing the contagious disease
category c in our model, decreased underproportionally by an esti-
mated 8% (column (2)). The estimate represents bct in Eq. (9). Note
that this estimate is likely upward biased, because the pre-reform
time trends for infectious diseases are not entirely parallel for all
three groups (Fig. 5d). The unbiased estimate likely tends toward
zero. In any case, while the findings suggest that b̂nt < b̂ct , (as sug-
gested by Eq. (11)), the findings also suggest that b̂t < 0, implying
that the sick pay cut reduced overall sickness absence.

Further results and robustness checks. Column (5) is a robust-
ness check because 50% of all injury and poisoning absences are due

to workplace accidents (BKK, 2004). The bill that cut sick pay, how-
ever, exempted workplace accidents from the cuts. Indeed, as see
by b1 in column (5), the injury and poisoning absence rate decreased
underproportionally by 11%.

In addition, column (3) also shows underproportional decreases
in the sick leave rate for respiratory diseases by 16%. Recall that respi-
ratory diseases is a mixed category with infectious and noninfectious
diseases and includes common colds and flu.

5.5.2. Directly testing bnt = bct
To directly test the model prediction bnt = bct, see Eq. (11),

we now pool all disease categories and estimate a triple difference
model in Table C3. The triple difference model is similar to Eq. (14),
but pools all disease groups and enriches it with triple interaction
terms k1GroupIi×post×Disd (in addition to all two-way interactions),
where Disd is a vector of disease indicators. k then indicates how
the reform effect for each disease category differs from the baseline
effect.

Column (1) of Table C3 replicates column (4) of Table 3 focusing
on musculoskeletal diseases, our proxy for noncontagious diseases.

Column (2) adds the contagious category infectious diseases and
includes 180 industry-year observations. With musculoskeletal dis-
eases as the baseline category, the two triple interaction terms
GroupIi × post × Infectious and GroupIIi × post × Infectious directly
test bnt = bct. We find a highly significant b̂ct - b̂nt = 21.4 per-
centage points. This suggests that the decrease in the contagious
sick leave rate was a significant 21.4 percentage points smaller than
the decrease in the noncontagious sick leave rate (8.2 vs. 29.6%, see
columns (2) and (4) of Table 3 and Fig. 5b and d).

Column (3) additionally adds respiratory diseases to the data. As
above, the triple interaction terms identify the differential effect rel-
ative to musculoskeletal diseases. We find that the decrease in the
respiratory sick leave rate is about 14 percentage points smaller
than then back pain baseline. This difference is significant at the 10%
level.

6. Conclusion

Empirically identifying presenteeism behavior is extremely chal-
lenging, yet crucial to testing for the negative externalities associated
with contagious presenteeism, a main economic justification for
publicly provided sick pay. Contagious presenteeism occurs when
employees with infectious diseases go to work sick and infect
coworkers and customers. Such behavior is a public health issue and
one driving force of the spread of contagious diseases. If contagion is
unobservable, which is usually the case at the beginning of sickness

Table 3
Effect of sick pay cut on sick cases per 100 workers by disease groups.

All diseases Infectious Respiratory Musculosk. Inj. & pois.

(1) (2) (3) (4) (5)

Group I × post −0.177∗∗∗ −0.082∗∗ −0.156∗∗∗ −0.296∗∗∗ −0.109∗∗∗

(0.042) (0.038) (0.046) (0.063) (0.032)
Group II × post −0.020 −0.024 0.000 −0.033 −0.027

(0.056) (0.059) (0.058) (0.078) (0.059)
Number of industries 18 18 18 18 18

Source: BKK (2004), own calculation and illustration. Standard errors in parentheses are clustered at the industry level. The descriptive statistics are in the Appendix (Table C1).
Each column represents one model as in Eq. (14), estimated by OLS, i.e., all models include industry and year fixed effects. The dependent variables are logarithms of the normalized
sick cases per 100 workers. Column (1) uses the total number of sick cases as dependent variable, column (2) solely uses infectious sick cases, and so on. Inj. & pois. in column (5)
stands for “Injuries and Poisoning.” For more data information, see Section 5.3. Group I’s sick pay was cut from 100 to 80% at the end of 1996. Group II’s sick pay was also cut but
the cut was smaller. For more information about the sick pay reforms, see Section 5.2.

* p < 0.1.
∗∗ p < 0.05.

∗∗∗ p < 0.01.
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episodes, then state regulation may reduce market inefficiencies by
mandating employers to provide monetary incentives for employ-
ees to stay home when sick. If such monetary incentives work, as
economic theory and empirical studies strongly suggest, then public
sick pay schemes reduce contagious presenteeism and the spread of
diseases.

To our knowledge, this study is the first that theoretically derives
and empirically implements two tests for the existence of conta-
gious presenteeism and negative externalities in sickness insurance
schemes.

First, using standard DD reduced-form methods, we analyze the
staggered implementation of employer sick pay mandates at the
city level in the U.S.—a country without generous sick pay cover-
age. Using Google Flu data, we show that influenza-like illness rates
decreased significantly when employees gained access to paid sick
leave. However, almost half of all U.S. employees do not have access
to sick leave insurance. Through the U.S. sick pay mandates, about
20 thousand employees per 100 thousand population gain coverage
for themselves and their children. Our estimates suggest that the
relatively comprehensive laws at the level of eight major U.S. cities
helped prevent about 3000 influenza-like illness cases per year, per
1 million population. Infections rates may further decrease in the
medium to long-run when employees have accrued larger amounts
of paid sick days.

The middle part of the paper provides a theoretical framework
illustrating the behavioral employee reactions to changes in sick pay
coverage. The model defines different possible cases of workplace
absence behavior under contagious and noncontagious continuous
sickness levels. As such, we can decompose classical “moral haz-
ard” into noncontagious absenteeism and contagious presenteeism
behavior. The former does not imply negative health spillovers,
whereas the latter does. Marginal employees with contagious dis-
eases call in sick instead of working sick when provided with sick
leave coverage. We also derive testable conditions for the over-
all labor supply effect under sickness insurance as well as for its
decomposed elements.

Finally, we make use of a German sick pay reform and administrative
physician-certified sick leave data at the industry-level to illustrate
how one can implement our proposed empirical test for the exis-
tence of contagious presenteeism. Under the main, relatively strong,
identifying assumption that the first order labor supply reactions
are similar for contagious and noncontagious diseases, we also find
evidence for the existence of contagious presenteeism in Germany.
However, in case of Germany, with one of the most generous sick
leave systems worldwide, the reduction in noncontagious absen-
teeism was clearly larger than the increase in the infectious sick leave
rate due to contagious presenteeism when sick pay was cut from a
baseline level of 100%.

Researchers could exploit different settings and use our proposed
method, or variants of it, to test for the existence and the degree
of contagious presenteeism, noncontagious absenteeism, and the
overall labor supply adjustments to changes in sick pay. Important
fields of applications include contagious presenteeism by teachers or
school children; for example, induced by teacher sick pay schemes
or parental sick pay schemes that may or may not cover sickness
of children. Schools are important sources for the spread of conta-
gious diseases. Another relevant setting would be at the firm level
to test for contagious presenteeism behavior by employees with a
high degree of customer contact. As a last example, contagious pre-
senteeism behavior by health care workers can be life-threatening
for patients and minimized by optimized sick pay schemes. Note
that our test can be carried out using many different types of data,
including school-level, firm-level data, or hospital-level data. Ide-
ally, one would want to exogenously vary sick pay schemes (e.g.,
in field experiments) and then measure changes in noncontagious
absenteeism and contagious presenteeism behavior.

More research is needed to better understand how exactly
contagious presenteeism leads to infections of coworkers and cus-
tomers and how it affects overall workplace productivity. Firm-level
and employee-level compensation strategies to dampen sickness-
related productivity losses are also fruitful and relevant research
questions.

Appendix A. United States

Table A1
Overview of employer sick pay mandates at the city level in the U.S.

Region Law passed Law effective Content

(1) (2) (3) (4)

San Francisco, CA Nov 7, 2006 Feb 5, 2007 All employees including part-time and temporary; 1 h of paid sick leave for every 30 h
worked; up to 5 to 9 days depending on firm size; for own sickness or family member; 90
days accrual period

Washington, DC May 13, 2008 Nov 13, 2008 ‘Qualified employees’; 1 h of paid sick leave for every 43 h, 90 days accrual period; up to 3
to 9 days depend. on firm size; own sickness or family; no health care or restaurant workers

Dec 18, 2013 Feb 22, 2014 Extension to 20,000 temporary workers and tipped employees
Seattle, WA Sep 12, 2011 Sep 1, 2012 All employees in firms with >4 full-time employees; 1 h for every 30 or 40 h worked; up to

5 to 13 days depending on firm size, for own sickness or family member; 180 days accrual
period

New York, NY June 26, 2013 April 1, 2014 Employees with >80 h p.a in firms >4 employees or 1 domestic worker; 1 h for every 30 h;
Jan 17, 2014 Up to 40 h; own sickness or family member; 120 days accrual period

Portland, OR March 13, 2013 Jan 1 2014 Employees with >250 h p.a. in firms >5 employees; 1 h for every 30 h; up to 40 h; own
sickness or family member

Newark, NJ Jan 29, 2014 May 29, 2014 All employees in private companies; 1 h of for every 30 h; 90 days accrual period; up to 24
to 40 h depending on size; own sickness or family

Philadelphia, PA Feb 12, 2015 May 13, 2015 Employees in firms >9 employees; 1 h of paid sick leave for every 40 h; 90 days accrual
period; up to 40 h; own sickness or family member

Oakland, CA Nov 4, 2014 March 2, 2015 Employees in firms >9 employees; 1 h of paid sick leave for every 30 h; 90 days accrual
period; up to 40 to 72 h depending on firm size; own sickness or family member

Source: several sources, own collection, own illustration.
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Fig. A1. Robustness checks for event studies.

Table A2
Cities Included in Weekly Google Flu Data.

City Month Day Year

Albany, NY 9 28 2003
Albuquerque, NM 10 12 2003
Anchorage, AK 10 17 2004
Arlington, VA 9 28 2003
Atlanta, GA 9 28 2003
Austin, TX 9 28 2003
Baltimore, MD 9 28 2003
Baton Rouge, LA 9 26 2004
Beaverton, OR 12 14 2003
Bellevue, WA 11 30 2003
Berkeley, CA 9 19 2004
Birmingham, AL 9 28 2003
Boise, ID 10 3 2004
Boston, MA 9 28 2003
Buffalo, NY 10 19 2003
Cary, NC 9 26 2004
Charlotte, NC 9 28 2003
Chicago, IL 9 28 2003
Cleveland, OH 9 28 2003
Colorado Springs, CO 9 19 2004
Columbia, SC 10 10 2004
Columbus, OH 9 28 2003
Dallas, TX 9 28 2003
Dayton, OH 11 23 2003
Denver, CO 9 28 2003
Des Moines, IA 10 17 2004
Durham, NC 9 28 2003
Eugene, OR 10 17 2004
Fresno, CA 12 7 2003
Ft Worth, TX 10 3 2004
Gainesville, FL 10 12 2003
Grand Rapids, MI 10 3 2004
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Table A2 (continued)

City Month Day Year

Greensboro, NC 11 14 2004
Greenville, SC 10 24 2004
Honolulu, HI 9 28 2003
Houston, TX 9 28 2003
Indianapolis, IN 9 28 2003
Irvine, CA 10 3 2004
Irving, TX 9 28 2003
Jackson, MS 11 14 2004
Jacksonville, FL 10 3 2004
Kansas City, MO 9 28 2003
Knoxville, TN 10 3 2004
Las Vegas, NV 9 28 2003
Lexington, KY 9 26 2004
Lincoln, NE 10 31 2004
Little Rock, AR 10 3 2004
Los Angeles, CA 9 28 2003
Lubbock, TX 10 17 2004
Madison, WI 9 28 2003
Memphis, TN 10 24 2004
Mesa, AZ 11 7 2004
Miami, FL 9 28 2003
Milwaukee, WI 9 28 2003
Nashville, TN 9 28 2003
New York, NY 9 28 2003
Newark, NJ 9 28 2003
Norfolk, VA 9 28 2003
Oakland, CA 9 28 2003
Oklahoma City, OK 9 28 2003
Omaha, NE 9 28 2003
Orlando, FL 9 28 2003
Philadelphia, PA 9 28 2003
Phoenix, AZ 9 28 2003
Pittsburgh, PA 9 28 2003
Plano, TX 10 16 2005
Portland, OR 9 28 2003
Providence, RI 10 17 2004
Raleigh, NC 9 28 2003
Reno, NV 10 24 2004
Reston, VA 11 28 2004
Richmond, VA 9 28 2003
Rochester, NY 9 28 2003
Roswell, GA 11 23 2003
Sacramento, CA 9 28 2003
Salt Lake City, UT 9 28 2003
San Antonio, TX 9 28 2003
San Diego, CA 9 28 2003
San Francisco, CA 9 28 2003
San Jose, CA 9 28 2003
Santa Clara, CA 9 28 2003
Scottsdale, AZ 10 24 2004
Seattle, WA 9 28 2003
Somerville, MA 9 28 2003
Spokane, WA 1 16 2005
Springfield, MO 10 30 2005
St Louis, MO 9 28 2003
St Paul, MN 9 28 2003
State College, PA 9 5 2004
Sunnyvale, CA 9 28 2003
Tampa, FL 9 28 2003
Tempe, AZ 9 28 2003
Tucson, AZ 9 28 2003
Tulsa, OK 9 28 2003
Washington, DC 9 28 2003
Wichita, KS 9 26 2004

Source: Google Flu (2015), own collection, own illustration. The table indicates the first observation period and all cities included in the
study. The last observation period is July 26, 2015 for the whole sample. Treated cities are in bold. Cities in gray are excluded because they
were covered by a state, not a city mandate, or because they were in close proximity to the treated cities (Bellevue, WA is 10 miles away
from Seattle, WA. Baltimore, MD is 40 miles away from Washington, DC)
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Appendix B. Model

B1. Derivation of Eq. (5)

With the implicit function theorem applied to Eq. (4), one obtains

∂s∗
a

∂a
=

∂u(s ,aw,T)
∂c

∂c
∂a

∂u(s ,w,T−h)
∂s

− ∂u(s ,aw,T)
∂s

. (B1)

The denominator can then be rewritten as the sum of

−

⎛
⎜⎜⎝

∂l(s ,aw, T)
∂s

− ∂l(s ,aw, T − h)
∂s︸ ︷︷ ︸

>0(3)

⎞
⎟⎟⎠ ,

and

⎛
⎜⎜⎝

∂l(s , w, T − h)
∂s

− ∂l(s ,aw, T − h)
∂s︸ ︷︷ ︸

≤0(3)

⎞
⎟⎟⎠ .

Thus the expression is negative and the inequality follows directly from a positive numerator and a negative denominator due to a ∈ [0, 1],
T − h < T and Eq. (3). The numerator is positive because utility increases in the replacement rate a. And the denominator is negative because
of the assumption that leisure time is more valuable when sick (Eq. (3)).

B2. Discussion of assumptions and possible model extensions

In addition to the assumptions discussed in the main text (incomplete information about contagiousness, similar disutility and labor supply
for contagious and noncontagious diseases,...), we discuss additional implicit model assumptions below.

First, we abstract away from savings to simplify the model. In Eq. (3), we assume that the marginal utility of consumption depends on the
sickness level. The higher the sickness level, the lower the marginal utility of consumption. However, with savings, sick workers could transfer
consumption into the future. In that case, Eq. (4) would imply a rather strong assumption. However, we could simply allow for savings and
then (realistically) assume ∂2u

∂s∂c = 0 (independence of sickness and marginal consumption utility).
Second, we discussed the possibility that sick leave could affect workers’ future wages, including a higher likelihood of dismissal. However,

we do not model this mechanism explicitly. The benefits of doing it are limited and it would make the model unnecessarily complex. Similarly,
sick leave could directly affect future health and productivity. The effects could go in both directions (fully recovering from a disease could
increase future health and productivity; however, workers might also lose firm-specific human capital). In addition, these mechanisms likely
differ by disease and occupation and would require to model complex effect heterogeneity.

Third, to keep the model tractable, so far, we have implicitly assumed that workers optimize their utility by only considering the current
time period, i.e., they are myopic. However, sick leave in t can affect sickness in t + 1 because workplace absences reduce the likelihood of an
infection. We have not modeled this channel explicitly yet. When considering this possibility, the expected utility in t + 1 conditional on being
absent or present in t (see Eq. (4)) becomes

lt (s
∗, w, T − h) + bE[lt+1|presentt] − lt (s

∗,aw, T) − bE[lt+1|absentt] = 0 (B2)

where b is the discount rate.
Next we derive how the sickness reservation level responds to changes in sick pay as in Eq. (B1). First, in this case, the numerator equals

the derivative of Eq. (B2) with respect to a. Multiplied by (−1), it reads

∂l(s ,aw, T)
∂c

∂c
∂a

+
∂bE[lt+1|absentt]

∂a
− ∂bE[lt+1|presentt]

∂a
> 0 (B3)

As before, ∂u(s ,aw,T)
∂c

∂c
∂a

is positive. In addition, the effects of sick pay on E[ut+1|absentt] are negligible because slightly more sick pay in t is
unlikely to affect lt+1.10 Finally, ∂bE[lt+1 |presentt]

∂a
< 0 because, ceteris paribus, increasing sick pay decreases contagious presenteeism and thus

the likelihood of future infections decreases. Therefore the numerator of Eq. (B1) becomes smaller.
In words: if workers were fully rational and expected to meet many sick co-workers at work after a sick pay cut, they might prefer to stay

at home in order to avoid infections. However, as it is very difficult to predict infections, abstracting away from this mechanism appears to be
a realistic assumption. Moreover, as the flu season extends over several months, it is unrealistic that workers call in sick over a longer period
of time to avoid infections. Thus, ∂bE[lt+1|presentt ]

∂a
is smaller than ∂l(s ,aw,T)

∂c
∂c
∂a

, which means that the numerator represented by Eq. (B3) remains

10 An example for a large term could be: medicine only becomes affordable once sick pay exceeds a certain threshold and this medicine would cure the disease only in
combination with sickness absence.
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positive. Overall, it implies that workers’ direct/first order response (more sick pay leads to more consumption when sick) is stronger than
indirect/second order response (more sick pay increases the likelihood of being infected).

Second, the denominator equals the derivative of Eq. (B2) with respect to s

∂l(s , w, T − h)
∂s

− ∂u(s ,aw, T)
∂s

+
∂bE[lt+1|presentt]

∂st
− ∂bE[lt+1|absentt]

∂st
< 0 (B4)

The assumption of myopic workers implies ∂bE[lt+1 |presentt]
∂st

− ∂bE[lt+1|absentt]
∂st

= 0. However, a higher sickness level today will likely decrease
expected utility tomorrow as individual health is correlated over time. This decrease in expected utility is most likely even larger if workers
work sick instead of recovering at home. Thus the entire denominator as shown in Eq. (B4) becomes even more negative when we relax the
myopia assumption.

In sum, relaxing the assumption of worker myopia results in a positive numerator (Eq. (B3)) and a negative denominator (Eq. (B4)); the
extended version of Eq. (B1) remains negative and more workers call in sick when sick leave increases.

Appendix C. Germany

Table C1
Descriptive statistics of sick leave measures.

Variable Mean Std. dev. Min. Max. N

Total sick cases per 100 workers 125.813 12.968 90.269 162.834 90
Total log(cases) 4.829 0.106 4.503 5.093 90
Infectious sick cases per 100 workers 5.881 0.981 3.896 9.698 90
Infectious log(cases) 1.759 0.159 1.36 2.272 90
Respiratory sick cases per 100 workers 36.59 4.099 26.34 50.049 90
Respiratory log(cases) 3.594 0.113 3.271 3.913 90
Digestive sick cases per 100 workers 18.141 1.964 13.356 24.049 90
Digestive log(cases) 2.892 0.108 2.592 3.18 90
Musculoskeletal sick cases per 100 workers 14.549 3.596 6.824 23.485 90
Musculoskeletal log(cases) 2.646 0.258 1.92 3.156 90
Injury sick cases per 100 workers 25.031 4.926 9.752 34.379 90
Injury log(cases) 3.194 0.25 2.278 3.537 90

Source: BKK (2004), own calculations and illustration. Descriptives are weighted by the annual number of industry-specific sickness fund enrollees.

Table C2
Number of enrollees per industry and treatment group.

Industry and classification Mean Std. dev.

Group I
Construction 31,693 13,913

Group II
Steel 114,236 8831
Textile 33,034 11,579
Mechanical engineering 162,364 35,168
Automobile 311,173 42,239
Ship and aerospace 26,090 7698
Electrical engineering, optics 251,284 27,410
Wood and paper 33,375 6146
Printing 21,111 3080
Food and hospitality 27,074 4518
Trade 135,812 35,417
Banking and insurance 85,851 15,263

Group III
Chemical 233,675 63,750
Oil 11,572 2218
Glass 36,484 7417
Energy and water 39,670 8399
Postal and transportation 513,328 138,192
Public administration 317,137 63,066

Source: Bundesverband der Betriebskrankenkassen (BKK) (2004), own calculation and illustration.
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Table C3
Effect of sick pay on sick leave—pooled regressions.

(1) (2) (3)

Musculoskeletal Musculoskeletal, infectious Muscul., infect. respiratory

Group I × post −0.296∗∗∗ −0.296∗∗∗ −0.296∗∗∗

(0.063) (0.062) (0.062)
Group II × post −0.033 −0.033 −0.033

(0.078) (0.078) (0.077)
Group I × post × Infectious 0.214∗∗∗ 0.214∗∗∗

(0.073) (0.072)
Group II × post × Infectious 0.009 0.009

(0.097) (0.096)
Group I × post × Respiratory 0.141∗

(0.077)
Group II × post × Respiratory 0.033

(0.096)
Observations 90 180 270

Source: BKK (2004), own calculation and illustration. Standard errors in parentheses are clustered at the industry-disease level. The descriptive statistics are in Table C1. The
regressions are based on Eq. (1). The model in the first column equals the fifth column of Table 3. The model in the second column pools the two categories musculoskeletal and
infectious sick leave, where musculoskeletal sick leave is the reference group. The third column additionally adds respiratory sick leave. All regressions are estimated by OLS and
include industry, disease and year fixed effects. The dependent variables are logarithms of the normalized sick leave cases per 100 workers. For more information on how the
variables were generated, see Section 5.3.

* p < 0.1.
** p < 0.05.

*** p < 0.01.
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